Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana.

نویسندگان

  • Kay D Bidle
  • Sara J Bender
چکیده

In the modern ocean, phytoplankton maintain extremely high primary production/biomass ratios, indicating that they bloom, die, and are replaced weekly. The molecular mechanisms regulating cellular mortality and turnover are largely unknown, even though they effectively short-circuit carbon export to the deep ocean and channel primary productivity to microbial food webs. Here, we present morphological, biochemical, and molecular evidence of caspase-mediated, autocatalytic programmed cell death (PCD) in the diatom Thalassiosira pseudonana in response to iron starvation. Transmission electron microscopy revealed internal degradation of nuclear, chloroplastic, and mitochondrial organelles, all while the plasma membranes remained intact. Cellular degradation was concomitant with dramatic decreases in photosynthetic efficiency, externalization of phosphatidylserine, and significantly elevated caspase-specific activity, with the addition of a broad-spectrum caspase inhibitor rescuing cells from death. A search of the T. pseudonana genome identified six distinct putative metacaspases containing a conserved caspase domain structure. Quantitative reverse transcription-PCR and Western blot analysis revealed differential gene and protein expression of T. pseudonana metacaspases, some of which correlated with physiological stress and caspase activity. Taken together with the recent discovery of the metacaspase-mediated viral infection of phytoplankton (K. D. Bidle, L. Haramaty, J. Barcelos-Ramos, and P. G. Falkowski, Proc. Natl. Acad. Sci. USA 104:6049-6054, 2007), our findings reveal a key role for metacaspases in the turnover of phytoplankton biomass in the oceans. Furthermore, given that Fe is required for photosynthetic electron transfer and is chronically limiting in a variety of oceanic systems, including high-nutrient low-chlorophyll regions, our findings provide a potential ecological context for PCD in these unicellular photoautotrophs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic Analysis of Adaptation to Short-Term Changes in Culture Conditions of the Marine Diatom Thalassiosira pseudonana

This report describes the metabolic and lipidomic profiling of 97 low-molecular weight compounds from the primary metabolism and 124 lipid compounds of the diatom Thalassiosira pseudonana. The metabolic profiles were created for diatoms perturbed for 24 hours with four different treatments: (I) removal of nitrogen, (II) lower iron concentration, (III) addition of sea salt, (IV) addition of carb...

متن کامل

Cellular Responses Associated with ROS Production and Cell Fate Decision in Early Stress Response to Iron Limitation in the Diatom Thalassiosira pseudonana

Investigation of how diatoms cope with the rapid fluctuations in iron bioavailability in marine environments may facilitate a better understanding of the mechanisms underlying their ecological success, in particular their ability to proliferate rapidly during favorable conditions. In this study, using in vivo biochemical markers and whole-cell iTRAQ-based proteomics analysis, we explored the ce...

متن کامل

Iron Availability Influences Silicon Isotope Fractionation in Two Southern Ocean Diatoms (Proboscia inermis and Eucampia antarctica) and a Coastal Diatom (Thalassiosira pseudonana)

Citation: Meyerink S, Ellwood MJ, Maher WA and Strzepek R (2017) Iron Availability Influences Silicon Isotope Fractionation in Two Southern Ocean Diatoms (Proboscia inermis and Eucampia antarctica) and a Coastal Diatom (Thalassiosira pseudonana). Front. Mar. Sci. 4:217. doi: 10.3389/fmars.2017.00217 Iron Availability Influences Silicon Isotope Fractionation in Two Southern Ocean Diatoms (Probos...

متن کامل

Corrigendum: Iron Availability Influences Silicon Isotope Fractionation in Two Southern Ocean Diatoms (Proboscia inermis and Eucampia antarctica) and a Coastal Diatom (Thalassiosira pseudonana)

Citation: Meyerink S, Ellwood MJ, Maher WA and Strzepek R (2017) Corrigendum: Iron Availability Influences Silicon Isotope Fractionation in Two Southern Ocean Diatoms (Proboscia inermis and Eucampia antarctica) and a Coastal Diatom (Thalassiosira pseudonana). Front. Mar. Sci. 4:280. doi: 10.3389/fmars.2017.00280 Corrigendum: Iron Availability Influences Silicon Isotope Fractionation in Two Sout...

متن کامل

Differential cellular responses associated with oxidative stress and cell fate decision under nitrate and phosphate limitations in Thalassiosira pseudonana: Comparative proteomics

Diatoms are important components of marine ecosystems and contribute greatly to the world's primary production. Despite their important roles in ecosystems, the molecular basis of how diatoms cope with oxidative stress caused by nutrient fluctuations remains largely unknown. Here, an isobaric tags for relative and absolute quantitation (iTRAQ) proteomic method was coupled with a series of physi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eukaryotic cell

دوره 7 2  شماره 

صفحات  -

تاریخ انتشار 2008